
TTTTBBBBoooollllddddGGGGrrrriiiiddddPPPPrrrroooo
TBoldGridPro is the most powerful visual component included in the RAD-Studio for Bold suite. The basic tasks of the
TBoldGridPro control are displaying and manipulating data objects from a specified handle in a tabular grid. Of course,
these simple words do not describe all of the abilities of TBoldGridPro. It implements a vast number of advanced
features which cover almost all tasks needed in MDA programming. All of this functionality is instantly available; you just
need to set a few properties to specify the grid’s behavior. However, TBoldGridPro does not limit you to only these
settings, it has rich potential for extending the grid’s capabilities even further using various events.

This document describes the most exciting TBoldGridPro features. To achieve this, we have combined TBoldGridPro
properties and events into semantic groups, each group’s items are intended for implementation of a specific
TBoldGridPro feature, or a set of similar features. Thus, you will be able to discover the might of the TBoldGridPro
component more easily. Let’s begin!

Column sorting
Data displayed in the TBoldGridPro may be sorted at runtime. Sorting can be performed automatically or manually. The
sorting mode is determined by the options set in OptionsBehavior property of the TBoldGridPro component. The
bgboAutoSort option enables automatic sorting, while bgboManualSort enables manual sorting. These two options are
mutually exclusive. Object data may be sorted by clicking column title. The first click sorts the data in the column in
ascending order, whereas next clicks reverse the sorting order. Sorting by multiple columns is possible by holding down
the Shift key while clicking the column titles. To disable multiple column sorting the OptionsBehavior property should
include the bgboNoMultiSort option. If you want to reset sorting on a specific column simply click on its title while holding
Ctrl key.

The screenshot above shows a grid sorted by its “Industry” column in ascending order, followed by its “Contract count”
column in descending order.

To handle data sorting in manual mode you should use the OnTitleStateChanged event. It occurs every time the state
of column title is changed. You should take special actions that perform sorting (for example, rebuilding the OCL query)
in an OnTitleStateChanged event handler.

Column filtering
TBoldGridPro supports data filtering that can work both in automatic and manual modes. The kind of filtering (automatic,
manual, or none) is determined by the bgboAutoFilter and bgboManualFilter options of the OptionsBehavior
property. Note, that only one option, bgboAutoFilter or bgboManualFilter can be turned on at one time. Once the filtering
is enabled the special filter icons are displayed in the column titles. Clicking on the filter icon shows the filter dropdown
window.

The filter window contains two system rows, followed by a list of unique values taken from the current column. Selecting
a value instantly filters the grid data, showing only rows having the same value as one selected. (All) clears filter
settings previously set in the current column, while (Custom…) displays the Custom Filter that allows setting advanced
filter conditions.

Notice in the screenshot above how the filter status appears in a panel at the bottom of the grid. This status panel
displays the current filter state, in addition, it provides two checkboxes for quick filter control. Cross checkbox instantly
clears the filter, while another checkbox just set it active or inactive.

In automatic mode the grid handles all of the filtering operations itself. If you want to handle filtering manually you need
to implement an OnFilterChanged event handler. This event occurs every time the filter conditions are altered.

Footer summary
It is often required to aggregate totals for the data displayed in the grid. TBoldGridPro provides a special footer row
intended for displaying these totals. To make the footer row visible you need to set ShowFooters property to True, the
FootLines property indicates how many lines of text will be shown in the footers.

You will also need to specify how the aggregate values should be calculated, automatically or manually. This depends
on the bgboAutoFooterSummary and bgboManualFooterSummary options of the OptionsBehavior property. In
automatic mode the grid handles all the calculations.

The user may determine the type of aggregate value that is shown in a particular column by right-clicking on the column
footer beneath it. This invokes the built-in popup menu as shown in the screenshot above. If some kind of aggregate is
not applicable to the column, then it will be disabled in the popup menu. If you handle the calculating of aggregates
manually then you should implement an OnFooterStateChanged event handler. This event is fired when the footer
state (i.e. the type of aggregate) of a column is changed.

Data grouping
Data displayed in the grid may be grouped by one or more columns by simply dragging the column title to the group
panel. To make the group panel visible set ShowGroupPanel property to true, the group panel will appear at the top of
the grid.

The screenshot above shows a grid grouped by Industry column, then by State column.

Column layout customization
TBoldGridPro has rich capabilities for run-time and design-time layout customization. As a standard grid TBoldGridPro
allows simple column moving and resizing equipped with a full set of events, but there is more!

First of all, columns in the grid may be arranged in multiple levels as shown in the screenshot below. The number of
such vertical levels is practically unlimited. Multilevel column layout is implemented via the column grouping concept. A
column group is logical combination of columns intended for visualization purposes. Thus, in the screenshot below,
columns are arranged in 5 groups:

1- Name + Industry
2- Debit sum + Credit sum + Balance
3- Date of last contract + Contract count
4- Phone
5- State

As you see, every group may contain one or more columns. To add a column to the group you should drag its header to
the position that you want the column to be located. As you hover over the group a set of yellow arrows will appear,
these yellow arrows indicate the new position of the column if the mouse button is released. In the illustration below, the
State column is being moved under the Phone column, when the mouse is released a new column group will be created
containing both the Phone column and State column. To remove a column from the group, drag its title to the desired
location, this time the colored arrows which appear will be green. When the mouse button is released the column
groups will be rearranged. To enable column grouping for end-users at runtime, the bgboColumnGrouping option
should be included in the OptionsBehavior property.

Another useful option is automatic column fitting. Automatic column fitting mode is enabled when the AutoColumnFit
property is set to True. In this mode, if the grid width changes, all columns are proportionally resized, so that all visible
columns fit the whole grid client area.

There is a similar feature by the name of best fit . If you double-click the right edge of the column title, the width of the
column will be changed to accommodate the data it portrays, so that the contents of every visible cell will be displayed
in full without clipping.

The most powerful custom layout tool by far is the column customizer.

The column customizer window can be invoked by calling the Customize method of the grid. The customizer window
contains all columns which are available in the list handle to which the grid is linked, but are currently not displayed
within the grid. You may move columns between the grid and customizer form in order to show or hide them.

In addition, all runtime layout settings can be easily saved and later restored. Settings may be stored in a file, the
Windows registry, or any other place of your choosing. This document does not cover this technique, however, a
sample of saving grid layouts is included in the RAD-Studio samples.

Variable row height
Sometimes you may want the grid to display rows with different heights, based upon some condition. This may be
implemented easily by handling the OnGetRowInfo event. This event is fired every time the row of the grid is being
painted. The RowDef parameter passed to the event handler contains proposed settings for the current row of the grid,
which you may use to specify the values you need. One of the most useful members is RowDef.Height, which specifies
the height of the row in pixels.

The screenshot above shows a grid where the rows having a “checked” state of the first column cell are displayed with
double height. There are several other parameters that may be altered in the OnGetRowInfo event handler, but their
discussion is beyond the scope of this document. You can find several examples of OnGetRowInfo usage in the RAD-
Studio samples, or find more information in the RAD-Studio help files.

Incremental autosearch
The incremental autosearch facility provides a way to instantly locate rows matching some specified text.

This feature may be enabled by setting the Enabled sub property of the ParamsAutoSearch property to True. The
ParamsAutoSearch property also contains various parameters to fine tune the autosearch.
In the screenshot above a search is being performed on the Name column, the grid navigates to the row where text in
the cell starts with “dive “. You may also define shortcuts that allow navigating to the previous or the next matching
record.

Grid printing and export facilities
RAD-Studio now provides you with a number of ways of exporting the content displayed in TBoldGridPro to some
common formats, or to print it. All these are possible by calling just a single method!

RAD-Studio contains three units that are responsible for exporting: rs_html , rs_excel and rs_rave (only for Delphi 7).
Each of them contains procedures which perform the export. For example, the GridToHTML procedure declared in the
rs_html unit renders the grid as a HTML file. The following table lists all of the export procedures available:

Method Unit Description

GridToHTML rs_html Exports the grid content as an HTML file.

GridToXLS rs_excel Exports the grid content to an Excel
spreadsheet.

GridPreview rs_rave Previews the generated Rave report in the
Rave preview window.

GridToPrinter rs_rave Sends the grid directly to the printer.

GridToPDF rs_rave Exports the grid content to a PDF file.

Every procedure gets the grid to be exported as the parameter.

The above screenshot illustrates a grid exported as a PDF file and viewed in Adobe Acrobat Reader.

